精彩词条对流
补充:0 浏览:23308 发布时间:2012-12-20
对流(convection):流体内部由于各部分温度不同而造成的相对流动。
1. 物理学上指液体或气体中,较热的部分上升,较冷的部分下降,循环流动,互相搀和,使温度趋于均匀。对流是液体或气体中热传递的主要方式。 陶行知《中国大众教育问题》:“比如烧水,冷水重而往下沉,热水轻而往上浮,这叫做对流。” 李英儒 《野火春风斗古城?》第二二章四:“窝棚上有柳树笼罩,两端空气对流,虽在盛夏,颇感凉爽。” 2. 互相交流、渗透。 郭沫若《奴隶制时代·关于中国古史研究中的两个问题》:“社会制度不同,词的含义甚至会起对流。例如百姓在早是专称贵族的,后来也用于一般民众了;臣、宰、仆本是奴隶,后来却成为官僚的尊称了。” 定义 液相或气相中各部分的相对运动。因浓差或温差引起密度变化而产生的对流称自然对流;由于外力推动(如搅拌)而产生的对流称强制对流。对于电解液来说,溶质将随液相的对流而移动,是电化学中物质传递过程的一种类型。 流体(气体或液体)通过自身各部分的宏观流动实现热量传递的过程。因流体的热导率很小,通过热传导传递的热量很少,对流是流体的主要传热方式。对流可分为自然对流和强迫对流。流体内的温度梯度会引起密度梯度变化,若低密度流体在下 ,高密度流体在上, 则将在重力作用下自然对流。冬天室内取暖就是借助于室内空气的自然对流来传热的,大气及海洋中也 存在自然对流 。 靠外来作用使流体循环流动,从而传热的是强迫对流。 大气对流 大气中的一团空气在热力或动力作用下的垂直上升运动。通过大气对流一方面可以产生大气低层与高层之间的热量、动量和水汽的交换,另一方面对流引起的水汽凝结可能产生降水。热力作用下的大气对流主要是指在层结不稳定的大气中,一团空气的密度小于环境空气的密度,因而它所受的浮力大于重力,则在净的阿基米德浮力作用下形成的上升运动。在夏季经常见到的小范围的、短时的、突发性的和由积雨云形成的降水,常是热力作用下的大气对流所致。动力作用下大气对流主要是指在气流水平辐合或存在地形的条件下所形成的上升运动。在大气中大范围的降水常是锋面及相伴的气流水平辐合抬升作用形成的,而在山脉附近的固定区域产生的降水常是地形强迫抬升所致。一些特殊的地形(如喇叭口状的地形)所形成的大气对流既有地形抬升的作用,也有地形使气流水平辐合的作用。 一方面热力和动力作用可以形成大气对流,另一方面大气对流又可以影响大气的热力和动力结构,这就是大气对流的反馈作用。在大气所处的热带地区,这种反馈作用尤为重要,大气对流形成的水汽凝结加热常是该地区大范围大气运动的重要能源。 对流层 位于大气的最低层,集中了约75%的大气质量和90%以上的水气质量。其下界与地面相接,上界高度随地理纬度和季节而变化。在低纬度地区平均高度为17~18千米,在中纬度地区平均为10~12千米,极地平均为8~9千米。夏季高于冬季。 对流层中,气温随高度升高而降低,平均每上升100米,气温约降低0.65℃。由于受地表影响较大,气象要素(气温、湿度等)的水平分布不均匀。空气有规则的垂直运动和无规则的乱流混合都相当强烈。上下层水气、尘埃、热量发生交换混合。由于90%以上的水气集中在对流层中,所以云、雾、雨、雪等众多天气现象都发生在对流层。 对流层中从地面到 1~2 千米的一层受地面起伏、干湿、冷暖的影响很大,称为摩擦层(或大气边界层)。摩擦层以上受地面状况影响较小,称为自由大气。对流层与其上的平流层之间存在一过渡层,称为对流层顶,厚度约几百米到2千米 。 对流层顶附近气温随高度升高变 化的幅度发生突变,或随高度增加温度降低幅度变小,或随高度增加温度保持不变,或随高度增加温度略有增高。对垂直运动有很强的阻挡作用。 地幔对流说 一种说明地球内部物质运动和解释地壳或岩石圈运动机制的假说。它认为在地幔中存在物质的对流环流。在地幔的加热中心,物质变轻,缓慢上升形成上升流,到软流圈顶转为反向的平流,平流一定距离后与另一相向平流相遇而成为下降流,继而又在深处相背平流到上升流的底部,补充上升流,从而形成一个环形对流体。对流体的上部平流驮着的岩石圈板块作大规模的缓慢的水平运动。在上升流处形成洋中脊,下降流处造成板块间的俯冲和大陆碰撞。1928 年英国地质学家 A.霍姆斯认为上升流处地壳裂开,形成新的大洋底,对流的下降流处地壳挤压形成山脉。1939年D.T.格里格斯提出,由于岩石热传导不良,放射热的聚集导致对流。60年代后期板块构造学建立以后,地幔对流运动被普遍认为是板块运动的驱动力。 地球岩石圈下的软流圈有10%的融熔体。岩石圈以下的固体地幔因高温高压而表现为像粘滞液体一样的韧性,并能产生流动。地幔中因放射性同位素蜕变产生热而加温,密度变小,于是轻物质向上、重物质向下运动,以便达到最低位能的稳定状态,这就是地幔对流,速度非常慢,其上升流可持续几千万年到几亿年。 地震波速的各向异性的发现,以及由此提出的地幔对流引起晶体定向排列的假说,有力地支持了地幔对流说。J.摩根在20世纪70年代提出了一种单轴羽状地幔对流模式。对流体以每年几厘米的速度从地幔底部升起,形成以上升流为轴心,下降流在外的圆筒状对流体。上升流所对着的地壳区域就是热点。 热对流 热对流是指热量通过流动介质,由空间的一处传播到另一处的现象。火场中通风孔洞面积愈大,热对流的速度愈快;通风孔洞所处位置愈高,热对流速度愈快。热对流是热传播的重要方式,是影响初期火灾发展的最主要因素。影响热传导的主要因素是:温差、导热系数和导热物体的厚度和截面积。导热系数愈大、厚度愈小、传导的热量愈多。 热传递 (1)定义或解释物质(系统)内的热量转移的过程叫做热传递。 (2)说明热传递是通过热传导、对流和热辐射三种方式来实现。在实际的传热过程中,这三种方式往往是伴随着进行的。 热传导 ①热传导:热量从系统的一部分传到另一部分或由一个系统传到另一系统的现象叫做热传导。热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质的热传导性能不同,一般金属都是热的良导体,玻璃、木材、棉毛制品、羽毛、毛皮以及液体和气体都是热的不良导体,石棉的热传导性能极差,常作为绝热材料。 ②对流:液体或气体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程。对流是液体和气体中热传递的特有方式,气体的对流现象比液体明显。对流可分自然对流和强迫对流两种。自然对流往往自然发生,是由于温度不均匀而引起的。强迫对流是由于外界的影响对流体搅拌而形成的。 加大液体或气体的流动速度,能加快对流传热。 ③热辐射:物体因自身的温度而具有向外发射能量的本领,这种热传递的方式叫做热辐射。热辐射虽然也是热传递的一种方式,但它和热传导、对流不同。它能不依靠媒质把热量直接从一个系统传给另一系统。热辐射以电磁辐射的形式发出能量,温度越高,辐射越强。辐射的波长分布情况也随温度而变,如温度较低时,主要以不可见的红外光进行辐射,在500℃以至更高的温度时,则顺次发射可见光以至紫外辐射。热辐射是远距离传热的主要方式,如太阳的热量就是以热辐射的形式,经过宇宙空间再传给地球的。 流体力学 流体力学中,对流过程指流体处于宏观流动状态下,控制体V中c(流体单位体积中携带的物理量,如密度、热量、污染浓度等)的总量因对流而发生变化。可认为它由两部分组成:一部分是c在V中随时间增加而变化,另一项是区域V中由于流体流动、位置变化而引起流体中c的变化。对流强弱与流速大小有关。 与扩散的区别 流体力学中的扩散过程包括分子布朗运动形成的分子扩散以及流体湍流运动形成的湍流扩散。这种扩散使得物理量c在流场中由高值向低值方向移动。扩散速率与c的梯度成正比。 在流体力学动量控制方程中的对流项为非线性项,给一般有限元数值方法带来了很大不便。 二、对流 1、基本概念 1) 对流:是指由于流体的宏观运动,从而使流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递过程。 对流仅发生在流体中,对流的同时必伴随有导热现象。 2) 对流换热:流体流过一个物体表面时的热量传递过程,称为对流换热。 2、对流换热的分类 根据对流换热时是否发生相变分:有相变的对流换热和无相变的对流换热。 根据引起流动的原因分:自然对流和强制对流。 1)自然对流:由于流体冷热各部分的密度不同而引起流体的流动。 如:暖气片表面附近受热空气的向上流动。 2)强制对流:流体的流动是由于水泵、风机或其他压差作用所造成的。 3)沸腾换热及凝结换热: 液体在热表面上沸腾及蒸汽在冷表面上凝结的对流换热,称为沸腾换热及凝结换热(相变对流沸腾)。 3、对流换热的基本规律<牛顿冷却公式> 流体被加热时,(1-3) 流体被冷却时,(1-4) 其中及分别为壁面温度和流体温度; 用表示温差(温压),并取为正,则牛顿冷却公式表示为 (1-5) (1-6) 其中h—比例系数(表面传热系数)单位。 h的物理意义:单位温差作用下通过单位面积的热流量。 表面传热系数的大小与传热过程中的许多因素有关。它不仅取决于物体的物性、换热表面的形状、大小相对位置,而且与流体的流速有关。 一般地,就介质而言:水的对流换热比空气强烈; 就换热方式而言:有相变的强于无相变的;强制对流强于自然对流。 对流换热研究的基本任务:用理论分析或实验的方法推出各种场合下表面换热导数的关系式。 土方工程的对流 在土方施工中,经常回遇到:土方的对流,是指互相借方,造成浪费。 其他补充 |
|